
15618 Project Midpoint Report

Jiayu Bai, Xingsheng Wang

November 2020

1 Schedule

In terms of the original project schedule, we think we are still on track to com-
plete the project on time. Because the project checkpoint is delayed by a week,
our schedule is also extended. By our original schedule, we would have finished
reviewing the sequential version of the code and parallelizing over individual
frames before the checkpoint. This is all completed before the checkpoint. Due
to the extension of the checkpoint, here is a revised schedule for the following
weeks up to the final poster session.

1. 11.30 - 12.3

• Environment and dependency setup to run project with Cuda. (Xing-
sheng Wang)

• Parallelize RANSAC: parallelize over each iteration to calculate ho-
mography matrix. (Jiayu Bai)

2. 12.4 - 12.6

• Parallelize RANSAC: parallelize over point correspondences to eval-
uate homography matrix. (Xingsheng Wang)

• Further optimization and performance evaluation. (Jiayu Bai &
Xingsheng Wang)

3. 12.7 - 12.11

• Finalize project. (Jiayu Bai & Xingsheng Wang)

• Finish project report. (Jiayu Bai & Xingsheng Wang)

• Finish presentation for poster session. (Jiayu Bai & Xingsheng Wang)

2 Work Completed

First, we reviewed the sequential version of the code implemented in python with
numpy, skimage. Opencv is also used for reading and writing video frames. We
combined our implementation and solved a few bugs that we did not have time

1



to solve previously.

Then we decided to first parallelize using CPU. Due to the fact that python
thread is limited by the Global Interpreter Lock, we used the multiprocessing
library to fully utilize all the cores in the CPU. Python has both multi-threading
and multi-processing library. Multi-threading does not use all the hardware
cores and all the threads share the same space. Multi-processing will be able to
use all the hardware cores but each process will have their own memory space.
Since we need to utilize all the cores,we decided to go with multi-processing.
This brings a problem where we have separate memory space for thread. We
can either choose to process each frame and send the frame data to one process
to compile it into a final video or we can directly write the frames into video
segments and then combine them later. Since the frames contain a large amount
of data, we tested both methods and found out that writing into segments and
then combining them is more efficient. The overhead with send frame data is
much larger.

The next problem is how we assign work to each process. In lecture we see
there are block assignment and interleaved assignment. Interleaved assignment
will have better cache performance but that is on a shared memory space imple-
mentation. Video frame have a specific order and we have to write the frames
in order. If we used interleaved assignment, then we either create a video file for
each frame and then combine them together or we send it over to one process
and that process will output the video frames. Either way is not ideal as it
introduces either a large communication overhead or a lot files that need to be
combined and reading the files will give a large overhead. Hence, we decided to
use block assignment.

After that, we will need to pay attention to workload balancing. For each
frame, the amount of data that needs to be processed is roughly the same. The
way homographies are calculated is that we randomly choose points and calcu-
late the homography matrix. Since the process is random, the accuracy will be
random and the way to solve that is to do a loop and each loop will randomly
select point to calculate the matrix and report an accuracy. The matrix with
the best accuracy is chosen and this is done for all frames and hence this part
of the work is same. However, before finding the matrix, we will find points
of correspondence between the two sources and hence this will lead to a bit of
variance in workload. Generally speaking, work distribution is balanced. To
account for the fact that some threads will complete slightly faster, we have a
central work queue server, and the processes use sockets to connect to the server
and get the next segment to process. This way we can keep the processes as
busy as possible.

2



3 Results

For now, we parallelized over the videos frames and achieved 6.1x speedup.
This is achieved using multi processing on CPU (i7-8700k, 6 core, 12 threads,
4.3GHz).

The figure below is the sequential time: (The value is negative because we
calculated startTime - endTime).

We see that it took almost an hour.

This is the result after we use all the hardware threads:

The speedup is quite significant the 20s video took an hour to process previously
and now it can be done in 10 minutes.

4 Goals and Deliverables

In our proposal, we aimed to get 20x speedup. Right now, we are unsure if
that goal is achievable. By parallelizing over 12 hardware thread, we are able
to achieve 6.1x speedup, which is less than what we expected. On the other
hand, we have not yet utilized the power of GPU. We plan to parallelize the
RANSAC algorithm on GPU cores, which would increase our speedup. The
speedup that CUDA will provide is not yet known since we are using python
and the overhead of using python CUDA library is not tested yet. Hopefully,
that would help us achieve our goal and it is also equally likely that in the end we
may not achieve our goal due to the shear amount of work-related computation
needed and current hardware limitations.

5 Poster Session

For the poster session, we want to show augmented reality video as well as how
we parallelized RANSAC. We will also show our speedup results.

6 Concerns

Our biggest concern right now is running numpy code on GPU. The RANSAC
algorithm has a ton of numpy operations to calculate the homography matrix
from the corresponding points vector. We have no experience running numpy

3



on GPU before, but hopefully with the help of Numba, we will figure out how
to do that. The speedup may not be ideal due to us not being able to use
the best hardware available on market and that may limit how many matrix
multiplication we can do at the same time.

4


