
15-618 Final Project: Parallel Augmented Reality

with Planar Homography

Jiayu Bai, Xingsheng Wang

December 2020

1 Summary

For the final project, we parallelized a augmented reality program and achieved
45x speedup using multiprocessing and CUDA. The program uses planar ho-
mography to project a video on top of another surface in another video. The
machine used has a Intel i7-8700k CPU and a Nvidia GTX 1080 GPU. An ex-
ample output video could be found on the project website:

https://checkraiseoncloud.github.io/ParallelPlanarHomography/

2 Background

2.1 Input

The input to the program includes the original video, an image of the target
surface, and the target video on which we want to project the original video.
The example video uses a movie clip from kungfu panda as the original video
and projects it to the target surface of a textbook in the target video.

Figure 1: original video

1



Figure 2: target surface

Figure 3: target video

2.2 Planar Homography

In order to project the original video onto the target surface of the target video,
we need to perform planar homography on every frame of the video. For each
frame, we need to find a homography matrix H that projects the target surface
onto the target video frame. This homography matrix is a 3*3 matrix and it
is the mathematical representation of warping the surface on to its location in
the frame. For every point in the surface target, we can obtain its location the
target video frame by the following equation:Xvideo

Yvideo

1

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 ∗

Xsurface

Ysurface

1

 (1)

Once we have the homography matrix H, we can use it to project the target
video frame to the target video frame.

2



2.3 Points of Correspondence

In order to find the homography matrix, we need to first find points of correspon-
dence between the target surface and the target video. Point correspondence
means where a sample physical feature point in the target surface is located in
the target video frame. For example, in the following image, feature points on
the target surface on the left are matched against their locations in the video
frame on the right.

Figure 4: points of correspondence

To find and match these corresponding points, we first use corner detector to
extract feature points in the target surface. This would give us approximately
900 to 1000 feature points from the target surface and the video frame. These
are stored as numpy arrays. For example, if we have 954 feature points, then
we would have two numpy array locs1 and locs2, both of shape (954,2), where
the columns are the x and y coordinates of feature points. locs1 represents
the feature location on the target surface, whereas locs2 represents the feature
location on the video frame.

Then, we use BRIEF (Binary Robust Independent Elementary Features)
descriptor to summarize the pixels within a small patch around the feature
points. Each feature points are described by a 256 bit vector of 0’s or 1’s. Each
bit represents comparing a randomly selected pair of pixels on the patch around
the feature points. For example, for 954 feature points, the descriptor of feature
points are represented using numpy array of size (954, 256). Once we have these
descriptors, we can match them using Hamming distance. This will give us
multiple point correspondences between the surface image and the target video
frame. For each feature points in the surface image, we can obtain where that
point is located on the target video frame. For example, if we have 74 matched
points, we would have two numpy arrays of size (74,2), each representing the
matched points location on the target surface and the video frame.

2.4 RANSAC

Once we have multiple point correspondence, we can move on to solve the
homography matrix. Since there are miss matches and noise in the point corre-

3



spondences, we use an algorithm called RANSAC (Random Sample Consensus)
to select the best homography matrix. For every iteration, we first select four
points to calculate H. Then we evaluate H by warping all the feature points
and checking how many points actually get warped to their corresponding loca-
tions. The best homography matrix is the one where we have the largest number
of in-liers: points whose warped location is close enough to its corresponding
location on the target video.

2.5 Homography Matrix

For every iteration of the RANSAC algorithm, we derive the homography matrix
with the four corresponding points using the following equation:

A ∗



h11

h12

h13

h21

h22

h23

h31

h32

h33


= 0 (2)

where

A =



x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1 −x1

′

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1 −y1

′

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2 −x2

′

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2 −y2

′

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3 −x3

′

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3 −y3

′

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4 −x4

′

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4 −y4

′


(3)

and (x1, y1) and (x1′, y1′) represents the first pair of corresponding points.

We can then derive H by using Singular Value Decomposition of matrix A.
Finally, we use the homography matrix to warp the frame of the original video
to the target video.

4



2.6 Overall Algorithm

This is a psuedo code of the overall algorithm:

Data: target surface, original video, target video
Result: original video warped on top of the target surface in the target

video
load target surface, original video, and target video;
for every frame in the target video do

find feature points target surface and target video frame ;
match feature points and obtain points correspondence;
for number of RANSAC iterations do

select four random matching points;
calculate the homography matrix;
projects all matching points using the homography matrix;
calculate the number of in-liers and update the best homography
matrix;

end
use the best homography matrix to warp original video frame to the
target video;

end
Algorithm 1: Augmented Reality with Planar Homography Algorithm

2.7 Parallelism and Workload Analysis

We can see that there are several axis of parallelism that exist in this program.
The first one is that the homography matrix needs to be calculated for every
frame. Thus, we can parallelize over all the frames in the video. The second one
is the RANSAC algorithm on each frame, we can parallelize over the number
of iterations to find the best fitting homography matrix. Moreover, for each
iteration, we need to calculate the number of in-liers, so we can parallelize over
all the point correspondences.

As for cache locality, there is no temporal locality between frames: once we
finish one frame, we move on to the next one. However, after we obtain the point
correspondence, the working set size is small enough to fit into the cache: we
only need the matching points coordinates to calculate the homography matrix.
The real challenge is when we are matching the feature points, we are looking
at random patches all over the video frame and target surface.

Further detailed workload analysis showed that the most time consuming
part of the algorithm is actually the feature point matching part. The sequential
algorithm had a run time of about an hour, so we profiled the whole program
to see which function call took the most time to complete. In the figure below,
we see that the function computePixel took the longest time. This function
was previously given as a library function to us and was never changed when we
implemented the sequential algorithm. By analyzing this function, we see that it
is recoding the BRIEF descriptors into 1 and 0 given a list of pixel coordinates.

5



Figure 5: Most time consuming function call

Typically, there are 900-1000 centre points to check and each point has 256 pixel
points to map. This means that we are doing computation for a matrix of size
around 256000 integers for each call of computePixels. This function is called
twice per frame and with over 500 frames to process, this function takes the
longest time to complete given the share amount of data to compute on. The
computation itself is not complicated with 3 memory access and 12 arithmetic
operations. This scenario is ideal for GPU computation as it has a lot of small
cores to do simple computation.

3 Approach

3.1 Resource

We used the project assignment from Computer Vision (16-720) as our project
baseline. This is a sequential python implementation of the planar homography
algorithm. We parallelized this implementation on Intel i7-8700k and NVIDIA
GTX1080. The way we approached to optimize our project is described in the
following subsections in order.

3.2 Parallelize over frames using multiprocessing

We first started with the obvious approach: parallelize over the individual frame
of the target video. When we calculate the homography matrix, we only need
to look at the current video frame and the target surface, which means there is
no dependency between frames.

Due to the fact that python multithreading is limited by the Global Inter-
preter Lock, multithreading cannot fully utilize the hardware. Thus, we used
the multiprocessing to fully utilize the CPU, which had 6 cores and 12 hardware
threads. Since each process will have their own memory space, we chose to di-
rectly write the result of each chunk into separate video files and combine these
video files into a final video in the end. This significantly reduced the amount
of communication between processes. Otherwise, we will need to send all frame
result to a single process to write to the video file. Since each frame contains a
large amount of data, writing into separate video files is more efficient.

There are 511 frames in total and we divided these frames into multiple
chunks, each with 15 consecutive frames. We decided to go with block assign-
ment because video frames are written one by one. Plus, if we use interleaved
assignment, frame results need to be sent. To assign work to each process and

6



ensure a balanced workload, we have a central work queue server, and the pro-
cesses use sockets to connect to the server and get the next chunk to process.

3.3 Parallelize RANSAC

As mentioned above, there are multiple axis of parallelism in the RANSAC al-
gorithm. After we finished parallelizing over video frames, we looked at how to
parallelize RANSAC. Since we are already using all the hardware threads to par-
allelize over frames, we decided to use CUDA to parallelize RANSAC. Our idea
is to use each CUDA thread to compute a homography matrix from a random
sample of points and then use multiple threads to evaluate this homography
matrix against all feature points. Since the RANSAC algorithm uses many
numpy operations to compute the homography matrix, we were hoping that
these numpy operations could be supported in python CUDA kernel functions.
We looked at Numba, which can compile some python and numpy operations on
CUDA. However, after spending a ton of time researching on how to get these
numpy operations compiled, we found out that only a small subset of operations
are supported. To parallelize RANSAC on CUDA, we would have to implement
matrix multiplication, singular value decomposition and many other operations
on CUDA kernel functions by ourselves, which is out of scope of this project.

Then we tried to parallelize RANSAC iterations using MPI with the mpi4py
library. Since RANSAC runs for a fixed number of iterations, we decided to let
each processes run a reduced number of iterations. For example, the sequential
version RANSAC runs for 600 iterations, each time using four randomly chosen
corresponding points to calcualte the homography matrix. We used 12 processes,
and each runs for 50 iterations. We need to pass all the matching points to
each processes using MPI. After all processes are done, we gathered the locally
optimized homography from each processes and choose the best one according to
the number of in-liers. Unfortunately, this did not gave us good speedup: only
2x when we have 12 processes. The reason is that there is a lot of communication
between processes. Plus, other processes are sitting idle when the master process
is calculating the point correspondences. Thus, we decided not to pursue this
approach.

3.4 Parallelize point matching using CUDA

After we used multiprocessing to parallel process frames, we hit a speedup of 6x,
which is way below our target. Even with fine tuning with the load balancing,
we do not see much improvement with the speedup. Since the working set is
small enough to fit into a cache, cache misses won’t be a problem and thus
suggested that there are work within the processing of each frame that can be
parallelized. With the CPU at full load, we turn to parallel computation using
GPU. With the workload analysis done above, we identified one place where
matrix computation has become a big problem. The computePixel function
is called on nearly 512000 matrix elements and a heardware thread is now in
charge of doing the work. This is the bottleneck for our program after using

7



multi-processing on frames. Within the function computePixel, the image is
accessed multiple times at pixel locations and those pixel locations are accessed
in a random style. There will definitely be cache misses since a frame is too large
to be fit into the cache. Also, we can’t improve locality here since the points
of correspondence are unordered. One point in the upper corner of the image
may correspond a point in the lower corner of the image and hence we won’t be
able to improve locality here. Therefore, GPU computation is used here. With
the large amount of CUDA cores available, we will be able to process the large
amount of data in parallel. The matrix generate has 256 columns and hence we
have 256 threads per block. The number of rows is dynamic depending on the
number of points correspondence found within the images and hence we used
as much blocks as we can to fit the rows into the blocks.

Figure 6: computePixel CPU and GPU runtime comparison

In addition, within the CUDA implementation we also did some optimiza-
tions. An important thing to note is that computePixels read the matrix el-
ements and generate a new matrix. Hence all the data supplied to the GPU
should be placed in constant memory that is read-only and shared across all
threads. We also tried to have some local memory per thread and save the tem-
porary results in local memory before saving them to global memory. However,
this change did not result in great performance improvement. The local mem-
ory is not capable of storing that many temporary results and if we update the
global memory in intervals the improvement won’t be better than updating it

8



once. Hence we update to global memory directly. With all the optimizations in
place, we achieve a 10x speedup in calling computePixels alone. The speedup
is now mostly capped due to the PCIe 3.0 bandwidth designs and limited com-
puting resource of the GPU. (An RTX 2080 GPU with more CUDA cores and
higher clock speeds will result in better speedup)

Figure 7: computePixel CPU and GPU runtime comparison

4 Results

4.1 Results and Speedup Graph

The input to the system consists of the original video and the target video.
The original video is 20 seconds long, and the video file size is 6.3MB. The
target video is 21 seconds long, and the video file size is approximately 28.5MB.
The output video is 26 seconds long and the output file size is 16.3MB. The
output video is 20 frames per second, with 511 frames. For this project, we are
keeping the problem size constant and testing speedup on the same set of videos.
Since we assume that the each frame has approximately the same amount of
computation, and frames don’t depend on one another, we expect the speedup
is not dependent on the length of the videos. Since the input data size is already
very large, we did not feel the need to test speedup on other inputs.

The total execution time of the sequential code is 3384s. By paralleliz-
ing over individual frames on the CPU(i7-8700k, 6 core, 12 threads, 4.3GHz),
we achieved 6.3x speedup. After parallelizing feature descriptor calculation on
GPU(GTX1080), we achieved final speedup around 45x. We have also measured
the execution time using 4,6,8,12 cores both with GPU and without GPU. The
runtime and speedup graph is shown below. We can see that the speedup is
much better with the help of GPU.

9



10



4.2 Speedup Limitation

As explained in the background section, the planar homography algorithm has
many potential for parallelism. The major limit of speedup is disk accesses and
memory accesses. When the programs first started, the target video and the
original video needs to be read from disk. The video file size is very large, 34.8
MB in total, and we are reading these video files on disk. To write the warped
video frame to the output file, we are also writing 28.5MB to the disk. Since
we parallelized over individual frames, frames are written to separate video files
in parallel. However, the video loading process cannot be parallelized. In fact,
it takes 71.2 seconds to load the videos, which accounts for 11.5 percent of the
total execution time. (This time is measured with running with one processor
only)

Moreover, we speculate that we also suffer from memory latency during the
feature points matching process. There is no temporal locality between frames.
After corner detection, the feature points exist in random locations on the video
frame. Thus, when we are generating the descriptor for the feature points, we are
essentially acccessing random comparator pixels on the video frames. After each
descriptor is generated, we never visits these comparator pixels again. After we
have matching feature points, we only need the two feature location matrices to
generate the homography matrix. For every iteration of the RANSAC algorithm,
we are evaluating the homography matrix against all the feature locations. Thus,
we do benefit from temporal locality at this stage.

Lastly, there is also hardware limitation. The GPU we have in hand does
not have enough CUDA cores to let all 12 hardware threads in the CPU to
do image matching simultaneously and hence we do sacrifice some performance
here. Also, if given a CPU with more cores, we will be able to process more
frames at a time, but that is also subject to GPU CUDA capacity limitations
mentioned previously.

11



4.3 Further Analysis

We measured the time spent on each stages of the algorithm: video loading,
feature matching, RANSAC, video writing. This is how much time is spent on
each stage:

As we can see, the feature point matching process takes the majority of the
execution time. In the sequential version, feature point matching takes 93%
of the total execution time. After parallelizing feature descriptor calculation,
we reduced its percentage to 77%. There is still room for improvement for
feature point detection and descriptor matching. For feature point extraction,
we are using corner detection, which runs convolution on the whole image. For
descriptor matching, every feature points needs to be compared to each other
and the hamming distances needs to be sorted.

There is also room for improvements for parallelizing the RANSAC algo-
rithm. As explained in the previous section, we failed to parallelize RANSAC
on GPU due to technical limitations. The RANSAC algorithm has plenty of
opportunities for parallelism. We can parallelize over the total number of itera-
tions. We can also parallelize over all the feature points when we are using the
homography matrix to calculate the number of in-liers.

We think that the combination of CPU and GPU is a good hardware plat-
form for this project. CPU can handle file input/output, while the GPU can
handle the feature matching algorithm and potentially the RANSAC algorithm.

12



5 References

• Project is based on Assignment 2 from Carnegie Mellon University 16-720
Spring 2020 Course

• Parallel methods from Carnegie Mellon University 15-618 Fall 2020 Course
http://www.cs.cmu.edu/~418/

• Planar Homography
https://docs.opencv.org/master/d9/dab/tutorial_homography.html

• Numba documentation
https://numba.pydata.org/numba-doc/latest/index.html

• MPI for python documentation
https://mpi4py.readthedocs.io/en/stable/

6 Work and Credit Distribution

The credit distribution is 50-50. We shared our work on most of the aspects
of the project. The following is a breakdown of work done by each team member:

• Project proposal (Jiayu Bai and Xingsheng Wang)

• Program profiling and workload analysis (Jiayu Bai and Xingsheng Wang)

• Parallelize over individual frames (Xingsheng Wang).

• Dynamic work allocation for parallelizing over individual frames (Jiayu
Bai).

• Checkpoint report (Jiayu Bai and Xingsheng Wang)

• Performance evaluation and further optimization discussion (Xingsheng
Wang)

• Parallelize RANSAC with MPI (Jiayu Bai)

• Parallelize image matching with CUDA (Xingsheng Wang)

• Final report (Jiayu Bai and Xingsheng Wang)

13


